
Programming Assignment: Trains
1. Train simulation

Write a program that simulates trains at a switching station.

At the beginning of the simulation,
there are n trains.
Each starts with c cars. Each car has a fixed size s that limits
how
much it can carry. The sizes of the cars in each train are
1 ... c, from the front to the back of the train.
Trains are loaded
with more valuable materials toward the back of the train,
so the value of a train is
the sum of p*s, where p is the
position of each car (starting at 1) and s is its size.
So the starting value of each train is
1*1 + 2*2 + ... + c*c = c(c+1)
(2c+1)/6.

At each step, the simulation tosses an n-sided die, which indicates which train
is the donor of this step.
The simulation
then tosses tosses a 2-sided die, indicating whether to remove a car from the front (if the die shows 1) or the back of the
donor train (if the die shows
2). Ths simulation then tosses
an n-sided die, indicating which
train accepts the donated
car. It is possible for the donor to get its own
car back. The accepting train puts the donated car at its front.
When a car
moves to a new position, it retains its original size, but the
values of the train it left and the train it joins do change,
because cars are
now in a different position.

The simulation ends when any train becomes empty or t steps,
whichever comes first.

2. What to do

Write a program called trains that simulates the switching station.
This program must take n, c, and t as command-
line
parameters.
The program must fail gently if any of these parameters is ridiculous,
such as n = 0 or c = -5. The
program must read a stream of integers from standard input as its source of
randomness; this feature allows us to test the
program in a deterministic way.
After each step, the program should print (to standard output) which train
donates a car
(front or back) to
which recipient and the value of each train after the step.
When the simulation finishes (either
because a train has become empty or the
number of steps has reached its limit), the program prints which train has the
largest value (if there is a tie, select the earliest train in the collection).

The program must use a doubly-linked list to implement the trains
You must not use a library routine (such as C++
std::list or Java
java.util.LinkedList) for
linked lists; you must write your own routines.
This restriction is
frustrating, but the point of the exercise is to learn how
these lists work.
You may use array, struct, and class elements,
but not C++
vectors or Java Lists.
\fBDo not use code you find on the Internet; you will get 0 points and be
charged
with academic misconduct if we detect any such code.\fP

Try to make the program modular, with separate routines for the main loop,
for reading the next random number, for
evaluating the value of a train, and for
donating and accepting a car.

3. Useful tools

You have access to some useful tools. First, there is a sample
Makefile at
http://www.cs.uky.edu/~raphael/courses/CS315/prog1/Makefile.
It has a run target that compiles the
program (either trains.c or
trains.cpp) and runs it. Feel free to modify Makefile.

A second tool is randGen.pl,
a program to generate an appropriate stream of pseudo-random numbers
in the range 0 ..
231‒1. The Makefile
automatically gets a copy of this tool for you; it is stored at
http://www.cs.uky.edu/~raphael/courses/CS315/utils/randGen.pl. This
program, written in Perl,
takes
an optional integer parameter to seed the random-number generator if
you want reproducable results. Here is how

http://www.cs.uky.edu/~raphael/courses/CS315/prog1/Makefile
http://www.cs.uky.edu/~raphael/courses/CS315/utils/randGen.pl


you can invoke it with trains,
seeding the random-number generator to 82 and setting n=4,
c=20, and t=100:

randGen.pl 82 | trains 4 20 100

To convert a large pseudo-random integer x to one in the range 1..y,
use this formula:

(x % y) + 1. Here, % is the modulus
operator.

Warning: If you run randGen.pl by itself, it generates an unbounded
list of numbers. You should always pipe its
output into another program, such
as trains or less.

You can also get a working program that satisfies the specifications at
http://www.cs.uky.edu/~raphael/courses/CS315/prog1/workingTrains. The
Makefile mentioned
above automatically gets a copy of this file for you if
you make runWorking.

4. What to hand in

Submit via Canvas a Zip file containing
(1) a copy of your program, (2) Makefile, (3) a README file with external
documentation, and (4) a file output.txt created via

% randGen.pl 49 | trains 5 6 1000 > output.txt

The Makefile mentioned above has a zipAll target that creates a
package ready to submit.

5. Extra credit ideas

Make sure your program is running correctly before attempting any extra credit.
You get no extra credit for programs
submitted late.
If you do extra credit, mention what you have done in your README file.

1. Modify the rules of the simulation. For instance, trains can maintain order
sorted by size, or
they can always
donate the largest-size car.
If you modify the rules, you must also turn in a version of the program using
the
standard rules.

2. Compute and print running statistics, such as the average train value or the
entropy of the train values.
3. You may invent other extra-credit ideas, but be sure to document them.

http://www.cs.uky.edu/~raphael/courses/CS315/prog1/workingTrains

	Local Disk
	file:///C/Users/skr248/OneDrive%20-%20University%20of%20Kentucky/Documents/UK%20OER/Finkel/CS315/library/assignment1.html


